Тема урока: Методы линейного кодирования информации.  Коды       

                             проводных цифровых  линий   передачи

 

Цифровые сигналы передаются по разным линиям связи — кабельным (электрическим и волоконно-оптическим), радиорелейным и спутниковым. В зависимости от используемой среды распространения сигналам в линии придают различный вид, при котором параметры сигнала в наибольшей степени согласованы с параметрами линии связи. Эта операция называется линейным кодированием, при котором символы “1” и “0” информационного сигнала заменяются цифровым сигналом, характеристики которого в большей степени соответствуют параметрам линии. Полученный в результате линейного кодирования цифровой сигнал называется линейным кодом.

К линейным кодам предъявляются следующие требования:

— однозначность декодирования, т.е. из линейного цифрового сигнала должна однозначно формироваться исходная последовательность двоичных символов;

— в энергетическом спектре линейного цифрового …
сигнала должны быть ослаблены низкочастотные и высокочастотные составляющие;

— в линейном цифровом сигнале должна быть обеспечена высокая плотность импульсов, т.е. число импульсов, определяющих тактовые интервалы, должно быть существенно больше числа пробелов (“ нулей ” ).

     В зависимости от используемой среды распространения применяют различные линейные коды. В радиорелейных и спутниковых линиях, например, используют различные виды фазовой или частотной манипуляции. В линиях связи электрических кабелей распространена передача цифровых сигналов импульсами постоянного тока. При этом сигналы в линии могут быть двухуровневыми и многоуровневыми, из последних чаще всего применяются трехуровневые сигналы.. Двухуровневые сигналы могут принимать в процессе кодирования значения напряжения “+” или “-”, трехуровневые сигналы принимают значения “+”, “-” и “0” (пробел). Линейные коды цифровых волоконно-оптических систем передачи представляют двухуровневые сигналы, принимающие в процессе кодирования значения “+” или “0” (пробел).

                                         Линейные коды

        Преобразование цифрового сигнала к виду, позволяющему передавать его с наименьшими энергетическими затратами, малым уровнем, называется преобразованием к коду передачи, а сами коды - линейными или кодами передачи. При линейном кодировании желательно убрать постоянную составляющую сигнала и обеспечить условие выделения тактовой частоты для синхронизации.

К таким кодам относятся блочные, биимпульсные коды, коды СМI, МЧПИ и др.

Линейные коды делятся на однополярные и биполярные. Однополярные используются в основном в волоконно-оптичес-ких линиях связи (ВОЛС), биполярные – в кабельных системах, радиорелейных линиях (РРЛ).

Однополярные коды делятся на NRZ и RZ коды:

· NRZ – без возврата к нулю, т.е. значение сигнала не возвращается к нулю за время передачи символа (рисунок 4.17).

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image282.gif

· RZ – с возвратом к нулю, т.е. за время передачи символа сигнал меняет свое значение и возвращается к нулю (рисунок 4.18).

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image283.gif

В кодах RZ полоса частот увеличивается в два раза относительно кодов NRZ, за счет уменьшения длительности импульса tи.

Для того, чтобы убедиться в этом, рассмотрим спектры (рисунок 4.20) элементарных сигналов, соответствующих NRZ и RZ кодам (рисунок 4.19).

https://konspekta.net/studopediaorg/baza2/54973196839.files/image284.gif

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image286.gif

 

На графике наглядно видно, что спектр NRZ кода в два раза шире, т.е. NRZ сигнал занимает полосу частот в два раза больше, чем RZ сигнал.

К биполярным кодам относятся коды с чередованием полярности импульсов (ЧПИ), т.е. каждый четный импульс меняет полярность. Эти коды бывают также NRZ и RZ:

- NRZ ЧПИ (рисунок 4.21).

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image287.gif

 

Энергетические показатели данного кода и всех биполярных лучше, чем любого из выше рассмотренных, т.к. в сигнале отсутствует постоянная составляющая, однако, частота тактовой синхронизации в нем не содержится, что резко ограничивает применимость кода. Этот код не позволяет выделить тактовую частоту.

- RZ ЧПИ (рисунок 4.22).

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image288.gif

 

Он, и ему подобные, чаще всего применяются при передаче цифровых сигналов по электрическим кабелям и РРЛ, поскольку и электрический кабель, и РРЛ легко позволяют передавать отрицательную полярность импульсов.

В кодах ЧПИ для передачи двух символов (1 и 0) используется три состояния (1, 0 и –1), т.е. существует избыточность. Эту избыточность используют для обнаружения ошибок. В соответствии с принятым алгоритмом формирования кода в нем не могут следовать подряд два импульса одной полярности.

К биполярным кодам относятся также блочные коды, но здесь иначе используется избыточность ЧПИ

 

Рассмотрим биимпульсные коды. Здесь каждый символ представляется одним биполярным импульсом (рисунок 4.23).

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image289.gif

 

Приведем пример абсолютного биимпульсного кода (рисунок 4.24):

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image290.gif

 

К достоинствам этого кода относятся:

- возможность выделения тактовой частоты;

- отсутствие постоянной составляющей.

А к недостаткам:

- отсутствие избыточности;

- возможность неправильного приема символа, т.к. импульсы отличаются только фазой. Если произойдет случайный «переброс» фазы, то весь сигнал поменяет полярность. Чтобы этого избежать, вводят относительный биимпульсный код. В этом случае приведенная выше последовательность будет выглядеть так, как показано на рисунке 4.25.

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image292.gif

При этом принятый импульс считается единицей, если произошла смена фаз, и нулем – если нет.

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image294.gif

 

Рассмотрим спектр биимпульсного сигнала (рисунок 4.26).

Рисунок 4.26 – Спектр биимпульсного сигнала

Из графика видно, что в данном сигнале отсутствует постоянная составляющая. А так как именно постоянная составляющая требует большой мощности, то можно сделать вывод, что данный сигнал наиболее экономичен с точки зрения энергетики. К тому же отсутствие постоянной составляющей уменьшает такой отрицательный фактор, как дрейф нуля.

Коды СМI -это сочетание ЧПИ и биимпульсных кодов. Также как в NRZ ЧПИ происходит изменение полярности каждого четного единичного импульса, но при этом еще происходит замена нуля одним биполярным импульсом, как в биполярных кодах. При этом последовательность, приведенная при рассмотрении биимпульсных кодов, будет такой, как показано на рисунке 4.27, и нулю соответствует биполярный импульс.

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image295.gif

 

На практике часто применяют МЧПИ коды (модифицированный ЧПИ). Причиной их создания стала проблема выделения тактовой частоты при появлении в кодовой комбинации нескольких нулей подряд. В этих кодах вместо нулей добавляются определенные кодовые комбинации, которые удаляются после выделения тактовой частоты. Для того чтобы они легко удалялись, необходимо, чтобы они сбивали привычное чередование импульсов. Примером такого кода является код HDB-3. Число 3 здесь указывает на то, что допускается количество нулей не больше трех.

Комбинация 0000 заменяется на комбинацию 000V или В00V, где «В» и «V» = +(–) 1. Рассмотрим правила составления этого кода:

1. Полярность «В» всегда противоположна полярности предыдущего импульса, а полярность «V» – совпадает.

2. Если число единиц в предыдущей пачке четное, то вводится В00V, если нечетное – 000V. Под пачкой понимается последовательность импульсов между двумя паузами с числом нулей больше трех.

Например, двоичная комбинация, показанная на рисунке 4.28:

 

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image296.gif

После применения к ней описанного правила, код приобретет вид, показанный на рисунке 4.29:

 

https://konspekta.net/studopediaorg/baza2/54973196839.files/image297.gif

 

 Сигналы и коды в линейных трактах ЦСП

В оконечном оборудовании цифровых систем передачи (ЦСП) все виды первичных сигналов преобразуются в двоичный (бинарный) сигнал, состоящий из последовательности видеоимпульсов и пауз, отображающих единицы и нули цифровой информации. Совокупность устройств, обеспечивающих передачу цифрового сигнала на противоположную оконечную станцию системы передачи, его прием и необходимую достоверность, называется цифровым линейным трактом (ЦЛТ). Двоичный электрический сигнал при передаче по ЦЛТ подвергается искажениям и воздействию различного рода помех. Характер этих воздействий на цифровой электрический сигнал, качественные и количественные методы их оценки и способы борьбы с ними имеют специфические особенности, которые и рассматриваются ниже. Наиболее важной особенностью цифрового способа передачи сигналов является возможность восстановления формы(регенерация) искаженной импульсной последовательности при прохождении через направляющую среду, например, кабельную линию связи.

Линейные цифровые сигналы, при помощи которых передается бинарная информация на участках регенерации ЦЛТ, применяются во всех типах современных ЦСП для уменьшения искажений и помех, возникающих при передаче цифровых сигналов и для уменьшения вероятности ошибки в процессе регенерации.

Линейные цифровые сигналы, получаются из двоичной последовательности, путем использования специальных линейных кодов с помощью ПКпрд. В общем случае при помощи линейных сигналов происходит согласование спектральных характеристик цифровых сигналов, подлежащих передаче, о спектральными характеристиками используемой линии передачи. При этом должна обеспечиваться заданная скорость передачи, требуема помехозащищенность и возможность выделения тактового сигнала (тактовой частоты) из передаваемого линейного сигнала для обеспечения тактовой синхронизации в линейных регенераторах и приемной станции. Желательно также, чтобы структура линейного сигнала позволяла обнаруживать ошибки и исправлять их. При формировании линейных сигналов ЦСП каждому подлежащему передаче двоичному цифровому символу «0» или «1» (или группе символов) ставится в соответствие элемент (или группа элементов) линейного сигнала, пере-даваемый за один тактовый интервал Т (или несколько тактовых интервалов). Алгоритм формирования цифрового линейного сигнала называется линейным кодированием. В этой связи цифровой линейный сигнал, полученный по определенному алгоритму линейного кодирования, часто называют просто: линейный код в ЦСП.На выходе устройства объединения передающей части оконечного оборудования ЦСП групповой цифровой сигнал передается в виде униполярного двоичного сигнала (рисунок 1), имеющего энергетический спектр, представленный на рисунке 2.

Непременными узлами рассматриваемого оконечного оборудования ЦСП являются согласовывающие трансформаторы, включаемые между входом и выходом этой аппаратуры и кабельной соединительной линией, используемой для соединения оконечной аппаратуры с оконечными и узловыми радиорелейными станциями. Наличие трансформаторов приводит к тому, что по соединительной линии не проходит постоянная и сильно ослабляются низкочастотные компоненты, на которых у двоичного сигнала сосредоточена большая часть энергии. Кроме того, наличие у соединительной линии километрических сопротивления и емкости проводов приводит к подавлению высокочастотных составляющих, т.е. ограничению полосы. Перечисленные факторы приводят к значительным искажениям передаваемых двоичных сигналов, что снижает помехоустойчивость их передачи.

Чтобы уменьшить влияние рассмотренных искажений на помехоустойчивость передачи униполярных двоичных сигналов (коды RZ и NRZ на рисунке 6.1), необходимо преобразовать их в линейный цифровой сигнал, в котором отсутствовали бы постоянная и низкочастотные составляющие. Этим условиям удовлетворяют так называемые балансные коды, из которых наибольшее распространение получили AMI (ЧПИ), HDB-3 (МЧПИ) и CMI (рисунок 6.1).

Код с чередующейся полярностью импульсов (AMI, ЧПИ)

Алгоритм перехода от двоичного сигнала к коду ЧПИ (рисунок 1) состоит в том, что символу 0 в обоих случаях соответствует пауза, а символу 1 в коде ЧПИ соответствуют импульсы положительной или отрицательной полярности. Строгое чередование полярности импульсов позволяет обеспечить подавление постоянной и низкочастотных составляющих спектра и, следовательно, уменьшить искажения импульсов в линии. Важным достоинством кода ЧПИ является чрезвычайная простота обратного перехода к двоичному сигналу, для этого достаточно осуществить двухполупериодное выпрямление сигналов кода ЧПИ. В настоящее время код ЧПИ рекомендован для использования в низкоскоростных цифровых потоках до 64 кбит/с.

Модифицированный код ЧПИ (МЧПИ, HDB-3)

Существенным недостатком кода ЧПИ является трудность выделения тактовой частоты, если в двоичном сигнале появляется подряд множество символов "О". Суть модификации кода ЧПИ состоит в том, что в паузу, длина которой превышает п нулей, помещают балластные сигналы. Они улучшают условие выделения тактовой частоты, но в то же время легко могут быть обнаружены и изъяты на приеме.

В качестве примера рассмотрим получивший широкое распространение код высокой плотности следования единиц (КВП-3, HDB-3), у которого n=3. В качестве балластных используются два типа сигналов (рисунок 1), имеющих условное обозначение 000V и B00V. При выборе конкретного вида балластного сигнала исходят из следующих условий: полярность импульса В всегда противоположна полярности предшествующего импульса, полярность импульса V всегда совпадает с полярностью предшествующего импульса; если между двумя соседними паузами в двоичном сигнале с числом нулей n1 > 4 и n2 > 4 четное число единиц (0, 2, 4, 6 и т.д.), то заполнение второй паузы начинается с балластного сигнала B00V, если число единиц между двумя вышеупомянутыми паузами нечетное, то заполнение второй паузы начинается с балластного сигнала 000V.

 

Описание: Описание: Описание: E:\Эл. книга 2015 Ауғанбай Б ТЦС000000\Теория\img\135.gif

 

Рисунок 1 - Двоичные и балансные коды

 

Пример использования алгоритма формирования кода КВП-3 приведен на рисунке 6.1. В процессе заполнения пауз балластными сигналами производится чередование полярности импульсов двоичного сигнала таким образом, чтобы нарушение чередования полярности всегда указывало на наличие балластного сигнала. Код КВП-3 рекомендован для использования при скорости цифровых потоков до 100 Мбит/с.

Код СМI

При формировании этого линейного кода не используются балластные биты и в отличие от троичных кодов ЧПИ и МЧПИ он является двоичным. Символы "1" исходного двоичного сигнала передаются чередованием полярностей импульсов затянутых на тактовый интервал, а символы "О" биполярными импульсами - первая половина тактового интервала минус 1, вторая половина - плюс 1 (рисунок 6.1). Код CMI рекомендован для использования при скорости цифровых потоков свыше 100 Мбит/с.

Энергетические спектры кодов RZ, NRZ и балансных приведены на рисунке 2.

 

Описание: Описание: Описание: E:\Эл. книга 2015 Ауғанбай Б ТЦС000000\Теория\img\136.gif

 

Рисунок 2- Энергетические спектры кодов RZ, NRZ

 


Тема урока:  Основные узлы цифровых  телекоммуникационных 

                            систем  передачи.

Для работы функциональных блоков ЦСП с временным разделением каналов на всех этапах цифровой обработки сигналов, мультиплексирова­ния и демультиплексирования цифровых потоков, формирования линей­ного цифрового сигнала, обеспечения синхронной работы оконечного оборудования требуются определенного вида управляющие сигналы, па­раметры которых строго регламентированы во времени. Формирование управляющих сигналов осуществляется генераторным оборудованием (ГО), которое выполняется отдельно для передающей ГОпер. и приемной ГО прием. частей оконечных станций.

Генераторное оборудование обеспечивает формирование и распреде­ление импульсных последовательностей, управляющих процессами дис­кретизации, кодирования-декодирования, временного группообразования, ввода-вывода символов служебных сигналов на определенные позиции цикла передачи и т. д. От ГО необходимо получить импульсные последо­вательности со следующими основными частотами:

- частотой дискретизации Fa (обычно равной 8 кГц);

- тактовой частотой первичного цифрового потока (ШДП), равной

где т - число элементов в кодовой комбинации, 7VKlf - число канальных интервалов ПЦП и равной

fT = Fam NKH = 8-8-32 = 2048 кГц;

- частотой следования кодовых комбинаций (канальных интервалов),
равной FKK = \1ТЮ = Fa NKll =fT I m;

- тактовыми частотами цифровых потоков более высокого порядка,
получаемыми в результате объединения определенного числа цифровых
потоков более низкого порядка.

Рассмотрим построение ГО первичной цифровой системы, для которой необходимые импульсные последовательности можно получить путем де­ления тактовой частоты, получаемой от высокостабильного автономного задающего генератора ЗГ с относительной нестабильностью не хуже ± 10"6). На выходе ЗГ формируется гармонический высокостабильный сигнал с частотой, обычно равной или кратной тактовой частоте/т. Форми­рователь тактовой последовательности ФТП вырабатывает основную последовательность импульсов с частотой следования. Импульсы тактовой последовательности используются при выполнении операций кодирования и декодирования, формирования и обработки линейного цифрового сигнала.

Делитель разрядный ДР формирует т импульсных последовательно­стей Pi, Рг...Рт. Число разрядных импульсов, формируемых ДР, равно числу разрядов кодовой комбинации, а частота их следования для т = 8 равна FK=fT/m = 2048 /8 = 256 кГц. Импульсные последовательности с выхода ДР используются для правильного определения каждого разряда кодовой комбинации, при выполнении операций кодирования и декоди­рования, а также при формировании группового ИКМ сигнала, когда не­обходимо выделить временные интервалы для передачи соответствующих позиций синхроимпульсов, сигналов управления и взаимодействия и раз­личного вида сервисных сигналов.

Делитель канальный ДК формирует управляющие канальные импуль­сы последовательности КИд, КИ\...КИц-\- Частота следования КИ равна частоте дискретизации Fa.

Делитель цикловой ДЦ служит для формирования цикловых импульс­ных последовательностей Цо, Цх ...Цк-ь где k - число циклов в сверхцик­ле. Для к = 16 частота следования цикловых импульсов равна Fu = Fa/ к = = 8000/16 = 500 Гц.

Обычно предусматривается несколько режимов работы генераторного оборудования оконечных станций:

- внутренней синхронизации, при котором осуществляется работа от
местного высокостабильного автономного ЗГ (рис. 2.15)

— внешнего запуска, при котором осуществляется работа от внешнего
задающего генератора ВЗГ.

http://ok-t.ru/studopediaru/baza6/485137162329.files/image044.jpg

          Рис.1. Структурная схема ГО передачи

- внешней синхронизации, при котором осуществляется подстройка частоты местного ЗГ с помощью фазовой автоматической подстройки частоты (ФАПЧ), управляемой внешним сигналом.

Наличие установочных входов обеспечивает (при необходимости) возможность подстройки ГО данной станции к работе ГО другой станции, выбранной за ведущую станцию. Как следует из рис. 2.15, формирование необходимых последовательностей импульсов реализуется делением час­тоты.

Временные диаграммы работы ГО с использованием делителей час­тоты приведены на рис. 2. На вход делителя разрядных импульсов ДР от формирователя тактовой последовательности поступает периодическая последовательность импульсов. ДР формирует восемь разрядных импуль­сов Р\...Р%. Каждый разрядный импульс сдвинут относительно следующе­го на тактовый интервал. Интервал следования одноименных разрядных импульсов равен Тр= 8ТТ. На рис. 2.16,а показано положение импульсных последовательностей Р/...Р8 относительно тактовых. Из любой последо­вательности Pi формируются управляющие последовательности КИ0, КИ\, KHff.i, определяющие границы канальных интервалов и их временное по­ложение. Расположение КИ относительно разрядных импульсов и такто­вой последовательности также видно из рис. 2.16,д. На рис. показа­но расположение импульсов управляющих последовательностей Цо и Ц/ относительно последовательностей КИо..-KHn-i, а на рис. 2.16,в - взаим­ное расположение циклов Z/o- • • Цы в сверхцикле.

Схема ГО приема отличается от схемы ГО передачи следующими осо­бенностями, обеспечивающими работу ГО приема синхронно и синфазно с ГО передачей. Во-первых, импульсная последовательность с тактовой частотой fT будет поступать на вход ДР не от ЗГ, а от выделителя тактовой частоты - ВТЧ. Во-вторых, установка ГО приема по циклу и по сверхцик­лу осуществляется с помощью сигналов, поступающих от приемника син­хросигнала, о чем будет сказано ниже.

http://ok-t.ru/studopediaru/baza6/485137162329.files/image046.jpg

Рис.2 .Временные диаграммы работы генераторного оборудования

. Задающие генераторы

Основным требованием, предъявляемым к задающим генераторам (ЗГ) ЦСП, является стабильность частоты. В то же время они должны иметь возможность перестройки частоты в определенных пределах. Выполнение противоречивых требований обеспечения стабильности частоты ЗГ (в ре­жиме автогенерации) и реализации определенной перестройки учитывает­ся при выборе соответствующей схемы ЗГ. Относительная нестабиль­ность частоты ЗГ должна быть не выше 10~5, и поэтому в схемах ЗГ для стабилизации частоты используются кварцевые резонаторы (КР). Частота

http://ok-t.ru/studopediaru/baza6/485137162329.files/image048.jpg

Рис. 3. Принципиальная схема ЗГ на транзисторах

ЗГ выбирается в целое число большей, чем тактовая частота/т. Так, на­пример, ЗГ аппаратуры формирования первичного цифрового потока типа ИКМ-30 вырабатывает гармоническое колебание с частотой/зг= 8192 кГц. Выбор частоты генерации, в 4 раза превышающей тактовую частоту по­тока, позволяет осуществить почти оптимальное построение ЗГ. В схему ЗГ входят делитель частоты (ДЧ) и формирователь тактовой последова­тельности (ФТП). В настоящее время ЗГ цифровых систем передачи реа­лизуются как на дискретных (рис. 2.), так и на логических элементах (рис. 3).

http://ok-t.ru/studopediaru/baza6/485137162329.files/image050.jpg

Рис. 4. Функциональная схема ЗГ на логических элементах

Схема ЗГ  представляет двухкаскадный усилитель с положи­тельной обратной связью, в состав которого входит кварцевый резонатор КР. Режим по постоянному току первого каскада обеспечивается резисто­рами Л1...Л4, второго - резисторами R5...R6. Для изменения частоты ЗГ в заданных пределах включен варикап VD, управляемый напряжением Uyn, которое может изменяться или регулироваться устройством фазовой ав­топодстройки частоты при работе ЗГъ режиме внешней синхронизации.

Схема ЗГ (рис.3) состоит из трех инверторов DDI...DD3, сопро­тивлений R/ и /?5 обеспечивают перевод элементов D\ и D2 в активный режим. Длительность импульсов можно менять подборкой резисторов R\ и Re, сопротивления которых совместно с входной емкостью элемента DD3 образуют цепь временной задержки. Подстройка частоты осуществ­ляется управляемым варикапом VD.

Учитывая, что ЗГ должен работать в режиме как автогенерации, так и внешнего управления частотой в схеме предусматривается возможность переключения режимов. На рис. 4. представлена схема задающего ге­нератора, включающая в себя автогенератор с кварцевой стабилизацией, собственно ЗГ и схему фазовой автоподстройки частоты (ФАПЧ), со­стоящей из фазового детектора - ФД, фильтра нижних частот - ФНЧ и усилителя постоянного тока, формирующих сигнал управления пере­стройкой частоты ЗГ.

В режиме автогенерации устанавливаются перемычки 1 — 2, 4 - 6, а в режиме внешней подстройки частоты - перемычки 2-3, 4 ~ 6 и 7 - 8. При этом в работу включается схема ФАПЧ, которая сравнивает фазы внешней частоты синхронизации и собственной частоты ЗГ. Если имеют

http://ok-t.ru/studopediaru/baza6/485137162329.files/image052.jpg

Рис. 4. Схема ЗГ с фазовой автоподстройкой частоты

расхождения фаз этих частот, то вырабатывается соответствующий управляющий сигнал, и частота ЗГ подстраивается под частоту синхрони­зации.

В режиме использования внешнего генератора устанавливается пере­мычка 5-6. Работа схемы от местного генератора и работа от внешнего генератора совершенно одинаковы.

В режиме внешней синхронизации схема работает следующим обра­зом: устанавливается перемычка 7-8; частота местного ЗГ и частота от внешнего генератора поступают на фазовый детектор ФД на выходе кото­рого образуется разностный сигнал; ФНЧ выделяет постоянную состав­ляющую этого сигнала, величина которой пропорциональна расхождению частот воздействующих на него сигналов; сигнал с выхода ФНЧ усилива­ется УПТ, на выходе которого формируется сигнал напряжением £/уп, управляющий перестройкой частоты ЗГ (воздействуя, к примеру, на вари­кап).

. Делители частоты

Схемы делителей различного назначения (разрядных, канальных, цик­лов и сверхциклов) легко реализуются на основе счетчиков, регистров, дешифраторов и других логических схем.

Функциональная схема делителя разрядов ДР (для m = 8) с использо­ванием трехразрядного двоичного счетчика на триггерах Тг{...Тг3 показа­на на рис. 5,а.

Реализовать такой ДР можно и применением кольцевого счетчика из восьми триггеров Тг\...Тг%, рис. 5. Аналогичным образом можно по­строить и другие делители. На практике более широкое распространение получил первый вариант, который для своей реализации требует меньше­го числа триггеров.

http://ok-t.ru/studopediaru/baza6/485137162329.files/image056.jpgРис.5.

 


                      Тема урока: Регенерация цифровых сигналов

 

 1. Регенерация формы цифрового сигнала

Проходя через среду распространения, цифровой сигнал ослабляется и подвергается искажению и воздействию помех, что приводит к изменению формы и длительности импульсов, изменению случайным образом временных интервалов между импульсами, уменьшению амплитуды импульсов. Задача регенитора - восстановить амплитуду, форму, длительность каждого импульса цифрового сигнала, а также величину временных интервалов между соседними символами.

В кабельных ЦСП линейный сигнал чаще всего передается в виде комбинаций импульсов поостоянного тока и пробелов что упрощает реализацию регенераторов. В то же время регенераторы кабельных систем являются наиболее распространенным элементом современных цифровых сетей. Исходя из сказанного выше рассмотрим регенерацию цифрового сигнала, представляющего собой комбинацию импульсов и пробелов (единиц и нулей). Структура регенератора представлена на рисунке 1.48. Искаженный цифровой сигнал из кабельной цепи поступает на усилитель-корректор (УК), обеспечивающий частичную или полную коррекцию формы импульсов, и регистрируется решающим устройством (РУ). Решающее устройство представляет собой пороговую схему, которая срабатывает, если уровень сигнала на его входе превышает пороговый уровень РУ, и не срабатывает, если уровень входного сигнала меньше уровня порога.

. Принцип регенерации цифрового сигнала

 

Пороговое напряжение может подаваться извне или вырабатываться в схеме РУ. При поступлении импульса на выходе РУ появляется управляющий сигнал, а в случае 0 (.пробела) состояние РУ не изменяется. Формирующее устройство (ФУ) обеспечивает формирование по сигналам РУ импульсов с принятыми для конкретной системы стандартными параметрами.

В приведенной выше схеме, характерной для современных регенераторов, регистрация входящего сигнала и принятие решения о его значении осуществляются по каждому символу в отдельности (возможно принятие решений по всей кодовой комбинации или по циклу, так называемый «прием в целом»), что значительно упрощает реализацию схемы регенератора. Однако при этом требуется введение устройства тактовой синхронизации (УТС), которое должно обеспечить принятие решений на определенных временных интервалах. Эти интервалы выбираются в пределах участков тактового интервала, на которых принимаемый импульс имеет минимальные искажения, так как выбор момента регистрации в менее искаженной части импульса гарантирует верность принятия решения РУ. Верность принимаемых РУ решений зависит, в первую очередь, от способа обнаружения двоичного сигнала и качества работы УТС. При безошибочной работе РУ каждому входному импульсу соответствует выходной, а каждому «пробелу» на входе - «пробел» на выходе. Однако из-за присутствия на входе РУ различных помех, несовершенства устройства тактовой синхронизации и других причин в процессе регенерации возможны ошибки, выражающиеся в преобразовании 1 на входе регенератора в 0 на выходе и наоборот входного 0 в выходную 1.

 

 

 2. Построение регенераторов

Регенераторы современных ЦСП классифицируются по методу регистрации импульсов, виду тактовой синхронизации, методам получения колебания тактовой частоты и использования синхросигнала в процессе регенерации импульсов.

По методам регистрации импульсов различают регенераторы с однократным и многократным стробированием импульса цифрового сигнала. Практическое применение благодаря достаточной простоте реализации узлов регистрации нашли регенераторы с однократным стробированием, в которых на протяжении одного символа цифрового сигнала берется один отсчет и с помощью РУ устанавливается наличие 1 или 0 на входе регенератора.

По видам синхронизации различают регенераторы с внешней и внутренней синхронизацией.

При использовании внешней синхронизации цифровой сигнал в оконечном оборудовании линейного тракта объединяют с синхросигналом, получаемым от специальных УТС. При внешней синхронизации возможна также передача сигналов тактовой синхронизации по отдельному тракту. Оба способа внешней синхронизации требуют значительного усложнения оборудования системы и неэкономичны. Передача синхросигнала по отдельному тракту связана с необходимостью выравнивания группового времени распространения для информационных и синхротрактов. Совместная передача цифрового и синхросигналов кроме усложнения оборудования передачи приводит к усложнению схем регенераторов из-за необходимости осуществления процессов выделения тактовой частоты, подавления на входе регенератора составляющих цифрового сигнала, близких к тактовой частоте, объединения на выходе регенератора цифрового сигнала и сигнала тактовой синхронизации.

Исходя из этого на практике чаще всего используются регенераторы с внутренней синхронизацией, в которых тактовая синхронизирующая частота выделяется из цифрового сигнала. В зависимости от способа получения тактовой частоты регенераторы с внутренней синхронизацией подразделяются на регенераторы с пассивной и активной фильтрацией тактовой частоты.

При активной фильтрации для формирования колебания тактовой частоты используются генераторы с фазовой автоподстройкой либо генераторы, синхронизируемые входящим цифровым сигналом. При пассивной фильтрации для выделения колебания тактовой частоты используются избирательные цепи типа, резонансных контуров, многоконтурных схем, фильтров.

Типовая структура УТС регенератора с внутренней синхронизацией и пассивной фильтрацией тактовой частоты представлена на рисунке 1.49.

 Структурная схема УТС

 

Устройство нелинейного преобразования (НП) входного сигнала позволяет получить в спектре преобразованного сигнала составляющую с частотой, равной тактовой fт, которая может быть выделена устройством фильтрации тактовой частоты (ФТЧ) и направлена в формирователь стробирующих импульсов (ФСИ). Формирователь стробирующих импульсов формирует импульсы с частотой следования, равной выделенной fт, определяющей промежутки времени стробирования для РУ и управляющей работой формирующего устройства (ФУ).

При активной фильтрации структура УТС несколько видоизменяется (рисунок 1.50.). Ток тактовой частоты с выхода ФТЧ поступает на ФД. на второй вход которого подается тактовый сигнал от местного генератора тактовой частоты ГТЧ. Фазовый детектор вырабатывает управляющее напряжение Uy, пропорциональное разности фаз сигналов на входах ФД, которое поступает на вход цепи фазовой автоподстройки частоты ФАПЧ. Изменение параметров цепи ФАПЧ приводит к изменению частоты сигнала ГТЧ, при этом меняется разность фаз сигналов на входах ФД и напряжение Uy. Процесс продолжается до тех пор, пока частоты сигналов ГТЧ и ФТЧ не выравниваются, при этом Uy =0.

Рисунок 1.50. Структурная схема УТС

В регенераторах с внутренней синхронизацией синхросигнал может быть получен как из входной импульсной последовательности регенератора, так и из выходного сигнала регенератора. В первом случае регенератор носит название регенератора прямого действия (рисунок 1.51 а), во втором обратного действия (рисунок 1.51 б).


 
Рисунок 1.51. Варианты построения регенераторов однополярных цифровых сигналов

В связи с тем, что устойчивость регенератора обратного действия ниже устойчивости регенератора прямого действия из-за наличия контура обратной связи, на практике чаще используют регенераторы прямого действия.

Известны три способа использования сигналов тактовой синхронизации в процессе регенерации импульсов цифрового сигнала:

·         перемножение регенерируемого сигнала с сигналом синхронизации с помощью схем логического умножения;

·         сложение регенерируемого сигнала с сигналом синхронизации;

·         перемножение сигналов с последующим сложением полученного результата с сигналом синхронизации или линейным сигналом.

Наибольшее распространение получили регенераторы с РУ, осуществляющими перемножение регенерируемого сигнала с сигналом тактовой синхронизации. В таких регенераторах РУ осуществляет стробирование сигнала на его входе в моменты времени, определяемые УТС, в этом случае схема регистрации позволяет полностью восстановить временные интервалы между символами цифрового сигнала, так как они полностью определены моментами появления стробирующих импульсов на выходах УТС. Длительность стробирующего импульса обычно во много раз меньше длительности регистрируемого символа цифрового сигнала.

В высокоскоростных ЦСП выработка стробирующих импульсов в регенераторах сильно затруднена, так как их длительность оказывается значительно меньше длительности очень коротких элементарных символов цифрового сигнала. В данном случае применяют регистрацию с частичным восстановлением временных соотношений цифрового сигнала. При этом в РУ осуществляется сложение входящего цифрового сигнала с сигналом тактовой частоты, вырабатываемым УТС. В дальнейшем из напряжения суммарного сигнала вычитается пороговое напряжение, что позволяет определить значение регенерируемого символа. В некоторых случаях возможно применение комбинации двух рассмотренных выше методов.

Рассмотренные выше структуры регенераторов предназначены для восстановления однополярных цифровых сигналов. Для восстановления формы двухполярных сигналов регенератором должно быть предусмотрено два канала регенерации - отдельно для положительных и отрицательных импульсов. Разделение импульсов в соответствии с полярностью наиболее просто реализуется с помощью дифференциальных трансформаторов.

 3. Параметры регенераторов

Основным параметром регенератора является коэффициент ошибок Кош, определяемый как отношение числа ошибочно регенерированных символов Nош к общему числу символов No [3]:

 (1.24)

В каждой конкретной системе передачи для номинальной длины регенерационного участка задается минимально допустимое значение Кош.

В некоторых случаях в качестве основного параметра используется значение помехоустойчивости. Под помехоустойчивостью регенератора понимают то минимальное значение защищенности Аз min на входе регенератора, при которой обеспечивается заданный Кош. Помехоустойчивость оценивается с учетом ухудшающих работу регенератора факторов-неточности коррекции, нестабильности тактовой частоты, наличия зоны неопределенного решения РУ.

Для оценки качества коррекции импульсов УК регенератора и возможности достоверной регистрации импульса цифрового сигнала используются так называемые глаз-диаграммы. Глаз-диаграмма - это график или картинка на экране осциллографа, состоящая из системы наложенных друг на друга всех возможных вариантов цифрового сигнала в интервале времени, равном двум тактовым интервалам.

На рисунке 1.52 представлен вариант глаз-диаграммы. Точка Р графически фиксирует опознавание импульса в центре тактового интервала на уровне, равном половине его амплитуды. Разность devUр между уровнями регистрируемого импульса и соседнего, создающего максимальную по величине межсимвольную помеху, называется раскрывом глаз-диаграммы. Чем больше раскрыв, тем больше допустимый уровень аддитивной помехи, при которой будет принято правильное решение. Следовательно, увеличение раскрыва снижает коэффициент ошибок регенератора, а его уменьшение приводит к росту Кош. Отметим, что раскрыв уменьшается при смещении момента регистрации от центра импульса (точка Р смещается влево или вправо).

 Характеристика для оценки помехоустойчивости регенераторов (глаз-диаграмма).

 

 

Тема урока:  Принципы построения радиорелейных линий связи

  Радиорелейные системы передачи прямой видимости.

Радиосистема передачи, в которой сигналы электросвязи передаются с помощью наземных ретрансляционных станций, называется радиорелейной системой передачи РРСП. Цепочка радиорелейных станций образует радиорелейную линию связи РРЛС. Сигналы от первой станции принимаются второй, усиливаются и передаются далее к третьей станции, там вновь усиливаются и передаются к четвертой станции и т. д.

Станции, устанавливаемые на конечных пунктах РРЛС и предназначенные для введения и выделения передаваемых сигналов электросвязи, называются оконечными радиорелейными станциями ОРС, станции ретрансляции называются промежуточными радиорелейными станциями ПРС. На отдельных станциях осуществляется ответвление части сигналов для передачи в другом направлении или частичное выделение сигналов для передачи потребителям. Такие станции называются узловыми радиорелейными станциями УРС.

http://ok-t.ru/studopediaru/baza6/3255008310880.files/image006.jpg

 Рис. 1. Условное изображение РРЛ.

 

 

Аппаратура РРСП состоит из каналообразующей аппаратуры КОА, радиопередатчиков, радиоприемников и антенно-фидерных трактов. Один приемопередающий комплекс обычно может пропустить несколько сотен, а в ряде случаев и тысяч телефонных сигналов, или один телевизионный. В тех случаях, когда РРСП предназначена для передачи большего числа сигналов, она образуется несколькими приемопередающими комплексами, работающими в одном направлении на различных частотах. Каждый из таких комплексов сверхвысокочастотных приемопередатчиков принято называть стволом.

На ОРС с помощью КОА формируется группой сигнал из нескольких исходных сигналов. Он является модулирующим для несущей частоты f1. Модулированный радиосигнал с выхода радиопередатчика через разделительно-полосовой фильтр РПФ подводится к антенне и излучается в сторону ближайшей РПС. Без РПФ обойтись нельзя, так как на одну антенну, как правило, работают одновременно несколько радиопередатчиков разных стволов.

Радиосигнал, принятый антенной ПРС, вновь поступает на РПФ, который теперь выполняет функцию распределения сигналов каждого радиопередатчика на вход «своего» радиоприемник. Радиосигнал, пройдя РПФ, усиливается в радиоприемнике и радиопередатчике. При этом осуществляется преобразование частоты радиосигнала f1 в частоту f2. После преобразования радиосигнал излучается антенной в направлении следующей станции. На УРС между радиоприемниками и радиопередатчиками включается КОА, позволяющая выделить или дополнительно ввести часть сигналов.

Процесс приема радиосигналов на ОРС не отличается от рассмотренного на ПРС или УРС. С выхода радиоприемника групповой сигнал поступает на вход каналообразующей аппаратуры, которая осуществляет разделение сигналов для соответствующих потребителей. Ими обычно являются междугородная телефонная станция, телецентр, междугородная вещательная аппаратная.

http://uz.denemetr.com/tw_files2/urls_3/22/d-21177/7z-docs/1_html_m3e2503da.png

Рис.2.Структурная схема РРСП прямой видимости

 

По пропускной способности различают следующие РРЛС: многоканальные, с числом каналов ТЧ свыше 300;  средней емкости – от 60 до 300 каналов ТЧ; малоканальные – меньше 60 каналов ТЧ.

По области применения РРЛС делятся на магистральные, протяженностью 10 ... 12 тысяч км, зоновые – республиканского и областного значения, местные. Магистральные РРЛС являются многоканальными, зоновые имеют среднюю емкость, а местные – малоканальные.

По способу разделения каналов РРЛС могут быть с частотным и временным разделением каналов, а по диапазону используемых частот – дециметрового, сантиметрового и миллиметрового диапазонов.

Чтобы обеспечить радиорелейную связь в пределах прямой видимости, необходимо поднять антенны над уровнем земли на башнях или мачтах. Высоты антенных опор в зависимости от длины и профиля каждого пролета между соседними станциями могут достигать 100 ... 120 м. Когда станция расположена на естественной возвышенности, антенны могут быть установлены на крыше здания, в котором находится приемопередающая аппаратура.

Длина пролета между соседними РРС обычно 30 ... 70 км. В диапазонах частот выше 8 ГГц это значение может уменьшаться с повышением частоты. В отдельных случаях длина может быть уменьшена до 20 ... 30 км из-за необходимости размещения РРС в заданном пункте, а также когда на трассе РРЛ имеется препятствия.

Коэффициент усиления ретранслятора ПРС с учетом запаса на замирания сигнала составляет 160 ... 200 дБ (при коэффициенте усиления каждой из двух антенн 30 ...46 дБ). Мощность передатчика РРС 0,3 ... 10 Вт, коэффициент шума приемника 7 ...10 дБ (в варианте с малошумящим усилителем 3 ... 5 дБ). Наибольшее распространение получили магистральные РРСП в диапазонах частот 4 и 6 ГГц и внутризоновые в диапазонах 2 и 8 ГГц. Магистральные РРСП – многовольтные, число дуплексных радиостволов, организуемых на участке РРЛ, в одном диапазоне частот достигает восьми. Для автоматического резервирования стволов обычно используют несколько рабочих (2 ... 7) и один резервный стволы.

Радиорелейные системы передачи прямой видимости формируются с помощью комплексов оборудования, называемых радиорелейными станциями связи прямой видимости РРСС. В состав РРСС входят: антенно-фидерные устройства; приемопередающая аппаратура; оконечная аппаратура телефонных, телевизионных и цифровых радиостволов; аппаратура систем автоматического резервирования стволов; аппаратура служебной связи, телесигнализации и телеуправления; оборудование систем гарантированного электропитания и оборудование жизнеобеспечения РРС.

С помощью РРСП обычно передают очень широкополосные сигналы, например телевизионные или большие группы телефонных сигналов. Качественная передача таких сигналов возможна только в диапазонах дециметровых и более коротких волн. Известно, что радиоволны этих диапазонов могут устойчиво распространяться лишь в пределах прямой видимости между пунктами передачи и приема. Если наземные станции размещаются одна относительно другой на расстоянии прямой видимости между антеннами этих станций, то такая система называется РРСП прямой видимости. При высоте антенны 40 ... 50 м расстояние между станциями обычно не превышает 40 ... 50 км.

   Тропосферные и ионосферные  системы передачи

 Тропосфера - нижняя часть атмосферы Земли .В тропосфере всегда есть локальные объемные неоднородности, вызванные различными физическими процессами, происходящими в ней. Волны диапазона 0,3..5 ГГц способны рассеиваться этими неоднородностями. Механизм образования тропосферных радиоволн условно показан на рис. 2

https://konspekta.net/poisk-ruru/baza5/3321574392895.files/image147.gif

Рис. 3. Принцип тропосферной радиосвязи

Учитывая, что неоднородности находятся на значительной высоте, нетрудно представить, что рассеянные ими радиоволны могут распространяться на сотни километров. Это дает возможность разнести станции на расстояние 200..400 км друг от друга, что значительно больше расстояния прямой видимости. Линии на основе тропосферных радиорелейных систем передачи строятся, как правило, в труднодоступных и удаленных районах.

Значительные расстояния между станциями, безусловно, выгодны при организации протяженных линий, поскольку требуется меньшее число станций. Однако за счет глубоких замираний из-за неустойчивости пространственно-временной структуры тропосферы и крайне малой мощности радиосигнала в точке приема организация хорошего качества связи и значительного количества каналов затруднена.

В табл.  приведены параметры отечественных тропосферных радиорелейных систем передачи.

Тип аппаратуры

Диапазон частот, ГГц

Среднее расстояние между станциями, км

Число каналов ТЧ

"Горизонт-М"

0,8..1

    300

    60

ТР-120

0,8..1

    300

    120

ДТР-12

0,8..1

    600

     12

Радиосистемы передачи на декаметровых волнах

Радиосистема передачи, в которой используется отражение декаметровых волн от ионосферы, называется ионосферной системой передачи на декаметровых волнах.

В ионосфере происходит, строго говоря, не отражение радиоволны, а поворот ее траектории за счет неоднородности диэлектрических свойств вертикального профиля ионосферы. Траектория распространения радиоволн от одной точки на поверхности Земли к другой с одним отражением от ионосферы,  называется ионосферным скачком. Расстояние между пунктами приема и передачи, измеренное вдоль поверхности Земли, составляет около 2000 км. Траектория распространения радиоволн может быть образована несколькими ионосферными скачками. Условия распространения радиоволн, а следовательно, и качество радиосвязи зависят от состояния ионосферы, определяемого временем года, суток и циклом солнечной активности.

В результате ионосферные системы передачи на декаметровых волнах не позволяют организовать большого числа каналов, и обычно количество каналов не превышает одного-двух телефонных или нескольких телеграфных.

Радиосистема передачи, в которой используется рассеяние метровых волн на неоднородностях ионосферы, называется ионосферной системой передачи на метровых волнах. Образование ионосферных волн в метровом диапазоне во многом сходно с образованием тропосферных волн. Разница заключается в том, что рассеяние происходит не в тропосфере, а в ионосфере на высоте 75..95 км. Предельная дальность связи в этом случае 2000..3000 км, наиболее подходящие частоты 40..70 МГц. При ионосферном рассеянии в пункт приема приходит только ничтожная часть излучаемой энергии, что вынуждает использовать мощные радиопередатчики и большие по размеру антенны. Такие системы позволяют организовать с удовлетворительным качеством до трех телефонных каналов.

В атмосферу Земли непрерывно проникают потоки мелких космических частиц - метеоров. Большинство из них сгорает на высоте 80..120 км, образуя ионизированные следы. Протяженность следа 10..25 км, а время существования от 5 мс.  до 20 с. Радиосистемы, использующие отражения от следов метеоров, работают в диапазоне 30..70 МГц. Время прохождения радиосигналов при метеорной связи составляет только 2..4 ч в сутки.

Обычно с помощью этих радиосистем организуется передача телеграфных сигналов, причем таких, для которых задержка в передаче не играет существенной роли. Метеорные системы передачи применяются для дублирования ионосферных систем на декаметровых волнах в полярных широтах, для связи в метеорологической службе и некоторых других целей.

 


Тема урока: Сети связи с подвижными объектами.

1.     Пейджинговая система связи.

Пейджер (от англ. to page — вызывать, выкликать) — приемно-передающее устройство персонального радиовызова.

Пейджинговая связь появилась в середине 1950-х гг. и воспринималась неоднозначно, поскольку наряду с высокой оперативностью и низкой стоимостью она до сих пор еще является в основном односторонним видом связи. В 1990-х гг. на фоне стремительного развития сотовой связи ожидалось снижение популярности пейджинговой связи. Однако этого не произошло, поскольку были разработаны высокоскоростные протоколы обмена и появились системы двухсторонней связи. Пейджинговые сети связи организованы по радиальному и сотовому принципам, могут быть односторонними и двухсторонними.

Односторонние пейджинговые сети имеют широкое применение, поскольку предполагают сплошное перекрытие всей зоны обслуживания. На рис.1 приведена структурная схема односторонней пейджинговой сети.

 

 

 Рис.1Структурная схема односторонней пейджинговой сети.

 

     Структура пейджинговых систем

Сети персонального радиовызова (СПР), или пейджинговые сети (paging - вызов), - это сети односторонней мобильной связи, обеспечивающие передачу коротких сообщений из центра системы (с пейджингового терминала) на миниатюрные абонентские приемники (пейджеры).

http://siblec.ru/mod/html/content/8sem/071/071.files/image004.gif

В простейшем случае СПР состоит из пейджингового терминала (ПТ), базовой станции (БС) и пейджеров. Терминал, включающий пульт оператора и контроллер системы, выполняет все функции управления системой. БС состоит из радиопередатчика и антенно-фидерного устройства и обеспечивает передачу пейджинговых сигналов на всю зону действия системы, радиус которой может составлять до 100 км. Пейджеры осуществляют прием тех сообщений, которые им адресованы. В более сложных случаях (рисунок 3.1) СПР может иметь несколько радиопередатчиков, по возможности равномерно распределенных в пределах зоны действия, что позволяет более надежно обеспечить связью всю зону.

Пейджеры в общем случае представляют собой миниатюрные УКВ-приемники, снабженные декодером, устройством обработки и хранения информации, устройством отображения информации и сигнализации. Структурная схема пейджера дана на рисунке 3. Пейджеры подразделяются на тональные, цифровые и текстовые.

 

 

             Рис.3 Структурная схема пейджера.

Тональные и «голосовые» пейджеры — самые простые, дешевые и малогабаритные (размером со спичечный коробок), извещают абонента о вызове вибрационным, звуковым или световым сигналом. При этом тип оповещательного сигнала может условно кодировать одно из пяти-шести заранее выбранных абонентом сообщений: позвонить в голосовой почтовый ящик, позвонить в офис, позвонить домой и т. п. Тональные пейджеры применяются достаточно редко.

«Голосовые» пейджеры применяются в служебных сетях и позволяют после прохождения сигнала вызова прослушать речевое сообщение.

Цифровые пейджеры работают исключительно с цифровыми сигналами, имеют, как правило, дисплей и оперативную память. На ЖК-дисплей передается цифровое сообщение (номер телефона, по которому нужно позвонить; время некоторого заранее обусловленного события; курс акций и т.п.). Такой пейджер обычно используется совместно с голосовым почтовым ящиком (ГПЯ), организуемым практически в каждой пейджинговой системе. В этом случае на пейджер выдается только сообщение о наличии в ГПЯ информации в адрес абонента. Но содержание этой информации абонент может раскрыть для себя, позвонив в почтовый ящик с любого близлежащего телефона (доступ в ГПЯ конфиденциальный), — по идентификатору и/или паролю. Цифровые пейджеры работают в стандарте POCSAG.

Текстовые, или буквенно-цифровые, пейджеры пользуются наибольшей популярностью. Их модели весьма разнообразны. Информация отображается на многострочном жидкокристаллическом индикаторе (ЖКИ). Память содержит более 18 000 знаков. Сообщения выводятся как на русском, так и на английском языках. В качестве дополнительных функций текстовые пейджеры имеют часы, будильник, систему регистрации даты и времени поступления сообщения, обеспечивают просмотр и селективный выбор сообщений. Текстовый пейджер может служить записной книжкой, ежедневником с системой таймеров, оповещающих о времени намеченной встречи или телефонного звонка.

2.     Сотовые системы связи.

Первая система радиотелефонной связи, предлагавшая услуги всем желающим, начала функционировать в 1946 г. в США. Радиотелефоны, применявшиеся вначале в этой системе, использовали обычные фиксированные по частоте каналы связи. Если канал связи был занят, абонент переключался на другой — свободный. Впоследствии с развитием техники радиотелефонной связи свободный канал выбирался автоматически. Однако дальнейшее совершенствование систем радиотелефонной связи сдерживалось ограниченностью частотного ресурса, связанной с тем, что число фиксированных частот в определенном частотном диапазоне не может бесконечно увеличиваться: радиотелефоны с близкими по частоте рабочими каналами начинают создавать взаимные помехи.

Решение этой проблемы было найдено в середине 1940-х гг., когда исследовательским центром Bell Laboratories американской компании AT&T была предложена идея разбиения всей обслуживаемой территории на небольшие участки, которые назвали сотами (cell). Каждая сота должна была обслуживаться передатчиком с ограниченным радиусом действия и фиксированной частотой. Это позволило бы без всяких помех использовать ту же частоту повторно в другой ячейке (соте). На аппаратном уровне такой принцип организации связи был реализован только в начале 1990-х гг.

В 1990 г. в США был утвержден первый национальный стандарт цифровой сотовой связи, а в 1992 г. в Германии вступила в коммерческую эксплуатацию первая система цифровой сотовой связи стандарта GSM (Global System for Mobile Communication). В России в 1994 г. была принята концепция развития сетей сухопутной подвижной связи, инициировавшая развитие национальных сетей сотовой связи.

Главный принцип функционирования систем сотовой радиосвязи заключается в том, что система обслуживает территорию, разделенную на много небольших зон, каждая из которых обслуживается своим комплексом радиооборудования. Для разделения территории на зоны без перекрытия или пропусков участков наиболее оптимальной формой зоны является шестиугольник. Разделение территории на шестиугольные зоны, похожие на пчелиные сотовые ячейки, дало название радиотелефонной мобильной связи — сотовая. Границы соты определяются зоной устойчивой радиосвязи и зависят от мощности приемно-передающего радиоустройства, топологии местности и частотного диапазона работы системы. Чем выше полоса частот системы, тем меньше радиус соты, но тем лучше способность сигнала проникать через стены и другие препятствия и, что также важно, тем миниатюрнее радиоаппаратура и выше возможности организации большего количества абонентских радиоканалов. Современные сотовые системы работают на частотах 450, 800, 900 и 1800 МГц.

В состав оборудования системы сотовой связи входят базовые станции и центр коммутации, соединенные по выделенным проводным или радиорелейным каналам, как показано на рис.4.

 

Рис.4. Основные составляющие системы сотовой связи.

Центр коммуникации — это автоматическая телефонная станция системы сотовой связи, обеспечивающая все функции управления сетью: слежение за подвижными абонентами, организация их эстафетной передачи, переключение рабочих каналов в соте при появлении помех, соединение абонента с абонентом обычной телефонной сети.

Базовая станция представляет собой многоканальный приемопередатчик, работающий в режиме приема и передачи сигнала и служащий своеобразным интерфейсом между сотовым телефоном и центром коммуникации подвижной связи.

Число каналов базовой станции обычно кратно 8: 8, 16, 32. Один из каналов является управляющим, или каналом вызова, поскольку именно на нем производится установление соединения при вызове подвижного абонента сети, однако разговор происходит после переключения на другой канал, свободный в данный момент. Сама идея сотовой сети мобильной связи заключается в том, что, еще не выйдя из зоны действия одной базовой станции, телефон и его владелец попадают в зону действия следующей, и так вплоть до наружной границы всей зоны покрытия сети. При этом сотовая связь не обязательно подразумевает мобильность: сегодня во всем мире все большее распространение получает так называемая «сотовая фиксированная связь». Такое решение часто оказывается экономически выгодным — отпадает необходимость в дорогостоящей прокладке телефонного кабеля, а одной мощной базовой станции вполне достаточно для телефонизации целого микрорайона. Антенны базовых станций устанавливаются в городе на высоте 15—100 м от поверхности земли на уже существующих постройках (общественных, производственных зданиях, жилых домах, дымовых трубах), а за городом — на высоких мачтах.

Система сотовой связи функционирует по следующему алгоритму.

1.В режиме ожидания (трубка положена) приемное устройстворадиотелефона постоянно сканирует либо все каналы системы,либо только управляющие.

2.Для вызова соответствующего абонента всеми базовыми станциями системы связи по управляющим каналам передается сигнал вызова.

3.Сотовый телефон вызываемого абонента при получении этого сигнала отвечает по одному из свободных каналов управления.

4. Базовые станции, принявшие ответный сигнал, передаютинформацию о его параметрах в центр коммуникации, который,в свою очередь, переключает разговор на ту базовую станцию, гдезафиксирован максимальный уровень сигнала сотового телефонавызываемого абонента.

 

Число абонентов в каждой соте не постоянно, поскольку они перемещаются из соты в соту. При пересечении границы между сотами производится автоматическое переключение абонента на обслуживание в другой соте.

Важнейшей услугой сотовой связи является роуминг — возможность использования одного и того же телефона в поездках. Для обеспечения роуминга необходимо выполнение следующих условий:

1.                 совместимость стандарта сотовой системы места пребывания со стандартом компании, у которой был приобретен радиотелефон;

2.                 наличие у регионов и компаний организационных и экономических соглашений о роуминговом обслуживании;

3.                 существование каналов связи между системами, обеспечивающими передачу информации для роуминговых абонентов.

Роуминг подразделяется на следующие виды: автоматический, позволяющий абоненту выйти на связь в любое время в любом регионе; полуавтоматический, когда абонент предварительно должен оповестить оператора о желании пользоваться роумингом, и ручной, представляющий собой обмен одного радиотелефона на другой, подключенный к сотовой сети другого оператора, обслуживающего зону предстоящей поездки.

Системы сотовой связи подразделяются на аналоговые и цифровые.

Аналоговые системы сотовой подвижной связи относятся к первому поколению сотовых систем. В них используется аналоговый способ передачи информации с помощью частотной или фазовой модуляции, как в обычных радиостанциях. Недостатки применения аналогового способа связаны с возможностью прослушивания разговоров другими абонентами, отсутствием эффективных способов борьбы с затуханием сигналов под влиянием ландшафта и при перемещении абонентов. В России известны такие стандарты аналоговой связи, как NMT (Nordic Mobile Telephone — северный мобильный телефон) и AMPS (Advanced Mobil Phone System — развитая система мобильного телефона).

Цифровые системы сотовой подвижной связи относятся к системам второго поколения. По сравнению с аналоговыми они предоставляют абоненту более широкий выбор услуг, обеспечивают высокое качество связи. В России цифровые системы сотовой подвижной связи основаны в основном на стандарте GSM (Global System for Mobile Communication — глобальная система для мобильной связи), получившем самое широкое распространение в Европе и обеспечивающем хорошее качество связи и широкий международный роуминг.

Характеристики цифрового стандарта сотовой связи GSM даны в табл.

Характеристики цифрового стандарта сотовой связи gsm

Характеристика

Цифровой стандарт GSM

Диапазон частот, МГц

935-960; 890-915

Радиус ячейки, км

0,5-35

Ширина полосы

 частот канала, кГц

45

Разнос частот каналов, кГц

200

Стандарт обслуживается своими компаниями, называемыми обычно операторами сотовой связи.

При выборе оператора следует учитывать зону охвата территории и возможный роуминг; качество сигнала; сервисные услуги и их доступность; качество обслуживания; стоимость предоставляемых услуг и возможность выбора схемы расчета за них.

Сотовые радиотелефоны как неотъемлемая часть системы подвижной связи подвержены значительным трансформациям и с позиций конструктивных решений, и по объему предоставляемых сервисных функций и дизайну. Выбор стандарта сотовой связи обусловливает класс модели радиотелефона. В пределах каждого класса модели радиотелефоны различаются не только объемом сервисных функций, но часто и параметрами приемно-передающих трактов.

В состав конструкции радиотелефона вне зависимости от модели входят:

·         передающее и приемное устройства;

·         устройства преобразования и воспроизведения речи;

·         устройства контроля и управления;

·         антенна;

·         звонок (зуммер);

·         клавиатура;

·         дисплей.

         Всего лишь 30 лет назад содержимое современного сотового телефона заняло бы целый этаж здания, а теперь телефон размещается на ладони.

Все эти элементы обычно располагаются следующим образом: на передней крышке — клавиатура, дисплей, микрофон и громкоговоритель; на задней крышке — антенна, а между ними — многослойная печатная плата. Благодаря оригинальным инженерным решениям вес телефонов постоянно снижается.

       Одним из направлений совершенствования конструкции мобильных телефонов является их интеграция с различными техническими средствами информатизации. Так, компания Panasonic встраивает в свои модели диктофон, а компания Samsung Electronics — цифровую фотокамеру.

Воздействие на человеческий организм систем сотовой связи дискутируется в средствах массовой информации. Анализируются последствия облучения головного мозга при пользовании сотовым телефоном. Исследователи единодушны в том, что электромагнитное излучение влияет на ткани головного мозга. Единицей влияния микроволного излучения является «специфическая норма поглощения» SAR (Specific Absorbtion Rates), численно равная энергии поглощенного излучения, приходящейся на 1 г биоткани. Европейские организации рекомендуют для сотовых телефонов предельную норму SAR 2 мВт/г. Проведенные в Швейцарии исследования 16 моделей сотовых телефонов показали, что уровень SAR у них находится в диапазоне 0,28— 1,22 мВт/г.

          Базовые станции сотовой связи работают в режиме приема и передачи сигнала в диапазоне частот от 463 до 1880 МГц, что может неблагоприятно сказываться на здоровье человека. В Москве и Московской области специалистами разных стран были проведены исследования электромагнитной обстановки на территориях, прилегающих к базовым станциям. На прилегающей территории в 91 % случаев зафиксированные уровни электромагнитного поля были в 50 раз меньше допустимого.

       Однако сотовый телефон может быть смертельно опасен для человека, что связано с проблемой электромагнитной совместимости радиоэлектронных устройств. В связи с этим сотовые телефоны не разрешается использовать в больницах и на борту авиалайнеров, чтобы не внести помехи в работу используемого сложного радиотехнического оборудования. Сотовые телефоны могут быть опасны для людей, которые пользуются электронными кардиостимуляторами.

 


Тема урока:  Спутниковые системы связи.

 

4 октября 1957 г. в СССР был осуществлен запуск ИСЗ. Этим запуском было положено начало освоению околоземного космического пространства человеком. Одним из важнейших практических применений ИСЗ является осуществление дальней связи на УКВ, при котором ИСЗ играет роль ретрансляционной станции (рис. 1).

http://plaintext.ru/rrl/lecture/lect10/ris46.gif
                    Рис.1.

Спутниковая связь - это один из видов радиосвязи, основанный на использовании искусственных спутников земли в качестве ретрансляторов. Спутниковая связь осуществляется между земными станциями, которые могут быть как стационарными, так и подвижными. Спутниковая связь является развитием традиционной радиорелейной связи путем вынесения ретранслятора на очень большую высоту (от десятков до сотен тысяч км). Так как зона его видимости в этом случае — почти половина Земного шара, то необходимость в цепочке ретрансляторов отпадает. Широко используется для связи с подвижными объектами в тех областях земного шара, где отсутствует покрытие сетями сотовой связи (GSM, CDMA). Особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала. Для того, чтобы мощность сигнала, достигающего приемника, была достаточной, применяют одно из двух решений:

·         Спутники располагаются на геостационарной орбите. Поскольку эта орбита удалена от Земли на расстояние 35786 км, на спутник требуется установить мощный передатчик. Этот подход используется системой Inmarsat (основной задачей которой является предоставление услуг связи морским судам) и некоторыми региональными операторами персональной спутниковой связи.

·         Множество спутников располагается на наклонных или полярных орбитах с наклонением 86,5° и высотой 780 км. При этом требуемая мощность передатчика невысока, и стоимость вывода спутника на орбиту ниже. Однако такой подход требует не только большого числа спутников, но и разветвленной сети наземных коммутаторов. Такой подход используется операторами Iridium и Orbcomm.

                                 Достоинства спутниковой связи

Основное достоинство спутниковой связи - возможность осуществлять связь в любой точке мира, тогда как владельцы сотовых модемов могут передавать данные только на территории покрытия станциями сотовой сети. Все сети спутниковой связи предоставляют возможность надежной качественной связи. Различия между ними состоят в:

·         наборе дополнительных услуг, предлагаемых абоненту;

·         области покрытия;

·         стоимости аппаратуры и услуг связи.

                                 Недостатки спутниковой связи

·         Слабая помехозащищённость. Огромные расстояния между земными станциями и спутником являются причиной того, что отношение сигнал/шум на приемнике очень невелико (гораздо меньше, чем для большинства радиорелейных линий связи). Для того, чтобы в этих условиях обеспечить приемлемую вероятность ошибки, приходится использовать большие антенны, малошумящие элементы и сложные помехоустойчивые коды. Особенно остро эта проблема стоит в системах подвижной связи, так как в них есть ограничение на размер антенны и, как правило, на мощность передатчика.

·         Влияние атмосферы. На качество спутниковой связи оказывают сильное влияние эффекты в тропосфере и ионосфере.

·         Поглощение в тропосфере. Поглощение сигнала атмосферой находится в зависимости от его частоты. Кроме поглощения, при распространении радиоволн в атмосфере присутствует эффект замирания, причиной которому является разница в коэффициентах преломления различных слоев атмосферы.

·         Ионосферные эффекты. Эффекты в ионосфере обусловлены флуктуациями распределения свободных электронов. К ионосферным эффектам, влияющим на распространение радиоволн, относят мерцание, поглощение, задержку распространения, дисперсию, изменение частоты, вращение плоскости поляризации.

·         Задержка распространения сигнала. Проблема задержки распространения сигнала так или иначе затрагивает все спутниковые системы связи. Наибольшей задержкой обладают системы, использующие спутниковый ретранслятор на геостационарной орбите. В этом случае задержка, обусловленная конечностью скорости распространения радиоволн, составляет примерно 250 мс, а с учетом мультиплексирования, коммутации и задержек обработки сигнала общая задержка может составлять до 400 мс. Задержка распространения наиболее нежелательна в приложениях реального времени, например, в телефонной связи. При этом, если время распространения сигнала по спутниковому каналу связи составляет 250 мс, разница во времени между репликами абонентов не может быть меньше 500 мс.

·         Влияние солнечной интерференции. При приближении Солнца к оси спутника-наземная станция радиосигнал, принимаемый со спутника наземной станцией, искажается в результате интерференции.

Связь через ИСЗ  подразделяется:
-активные СС;
- пассивные СС.

В пассивных СС на борту отсутствует аппаратура, а имеется только отражатель, с помощью которого отраженная волна попадает на земную станцию. Напряженность поля в этом случае будет мала и гораздо меньше, чем при активной ретрансляции.

В связи с малой напряженностью поля, приемо-передающее оборудование на земле становится значительно сложнее. Качественные показатели каналов также невелики.

Однако, отсутствие бортовой аппаратуры увеличивает надежность системы.

Ширина полосы частот пассивных СС практически не ограничена и можно организовать новые СС, когда спутник выведен на орбиту. Число корреспондентов, которые могут работать между собой через ИСЗ очень большое.

Перечисленные недостатки  пассивных СС применима только при ТЛГ связи. Поэтому для передачи ТЛФ и ТВ используют активные ИСЗ.

Орбиты ИС при организации СС между пунктами А и Б

Траектория движения спутников Земли и, следовательно, время совместного видения ИСЗ с пунктов А и Б определяется орбитой.

Основные характеристики орбиты:
- наклонение плоскости орбиты к плоскости экватора;

- высота перигея (низшая точка орбиты);
- высота апогея (высшая точка орбиты).

Если орбита круговая, то высота перигея и апогея равны. Скорость обращения ИСЗ вокруг земли в этом случае равна U=630√r, где r радиус орбиты в км, отсчитанный от центра Земли. Период обращения вокруг Земли, согласно 3 закону Кеплера, равен Т=1,66·10-4·r3/2 мин . Этот период называют сидерическим или звездным, т.е. независящим от движения ИСЗ относительно Земли.

Если сидерический период равен 24 часам, то ИСЗ для наземного наблюдателя будет неподвижен. Такая орбита называется геостационарной. Высота ее над поверхностью Земли составляет порядка 36 тыс.км.

В бывшем СССР, а теперь в России на эту орбиту выводились спутники серии "РАДУГА" ("СТАЦИОНАР-I"), "СТАЦИОНАР-II", "Горизонт" и "ЗЕРКАЛО".

Зона видимости с ИСЗ на геостационарной орбите охватывает около 30% земной поверхности и поэтому 3 спутниками, отстоящими друг от друга на 120°, можно обеспечить связью почти весь земной шар.

Поскольку на ИСЗ находящейся на геостационарной орбите, кроме притяжения Земли действует притяжение Луны, Солнца и т.д., то для удержания спутника в заданной точке необходимо его корректировать, т.е. на спутнике иметь двигательные установки.

Недостатком геостационарной орбиты является сложность и невозможность обслуживания приполярных районов выше 81° северной или южной широты.

Для обслуживания этих районов в России используется другая орбита, орбита типа "Молния". Эта орбита эллиптическая с перигеем около 500 км и апогеем - 39000 км (рис. 2).

http://plaintext.ru/rrl/lecture/lect10/ris47.gif
Рис.2.

Наклонение орбиты к плоскости экватора примерно 63°. Апогей орбиты находится над Россией, а перигей над южным полушарием. Период обращения равен 12 часов. Находясь над территорией России он виден со всех точек. Длительность сеанса связи, например, между Москвой и Владивостоком составляет 9 часов. Для обеспечения круглосуточной связи на такую орбиту запускают одновременно не менее трех спутников. Через эти спутники в настоящее время осуществляются все виды связи в том числе ТВ распределительная сеть "Орбита".

Третий вид орбиты, это такой, когда спутник перемещается относительно земли и никогда не виден одновременно с пунктов А и Б. Эта так называемая низкая орбита и спутник на этой орбите работает как курьер. Пролетая над одним пунктом он принимает информацию и пролетая над другой передает ее (рис. 3)

http://plaintext.ru/rrl/lecture/lect10/ris48.gif
Рис.3

 

 


 Тема урока: Принципы построения  телекоммуникационных систем

                          со спектральным уплотнением - WDM

 

1. Общие положения

Спектральное уплотнение каналов (Wavelength division multiplexing, WDM, буквально мультиплексирование с разделением по длине волны) — технология, позволяющая одновременно передавать несколько информационных каналов по одному оптическому волокну на разных несущих частотах.

Традиционные технологии телекоммуникаций позволяют по одному оптическому волокну передать только один сигнал. Суть же технологии спектрального, или оптического уплотнения заключается в возможности организации множества раздельных сигналов SDH по одному волокну, а, следовательно, многократном увеличении пропускной способности линии связи.

Основы этой технологии были заложены в 1958, еще до появления самой волоконной оптики. Однако прошло около 20 лет, прежде чем были созданы первые компоненты мультиплексных систем. Первоначально они создавались для лабораторных исследований, и лишь в 1980 году технология спектрального уплотнения WDM была предложена для телекоммуникаций. А еще через пять лет в исследовательском центре компании AT&T была реализована технология плотного спектрального уплотнения (Dense Wavelength Division Multiplexing, DWDM), когда удалось в одном оптическом волокне создать 10 каналов по 2 Gbps.

Технология WDM позволяет существенно увеличить пропускную способность канала (к 2009 году достигнута скорость 15,5 Тбит/с), причем она позволяет использовать уже проложенные волоконно-оптические линии. Благодаря WDM удается организовать двустороннюю многоканальную передачу трафика по одному волокну (в обычных линиях используется пара волокон — для передачи в прямом и обратном направлениях).

Технология спектрального мультиплексирования (WDM) это способ транспортировки по одному физическому оптоволокну нескольких каналов передачи данных, путем разнесения длин волн (цветов), основанный на способности оптического волокна одновременно передавать свет различных длин волн (цветов) без взаимной интерференции. Каждая длина волны представляет отдельный оптический канал. При помощи мультиплексирования в едином световом потоке, пересылаемом по оптическому волокну, можно объединить от четырех до 80 и более информационных каналов с разной длиной волны. Данная технология предназначена для передачи данных, поступающих в единую транспортную магистраль от различных источников на разной скорости и с использованием разных протоколов (Fibre Channel, Ethernet или ATM

 

 

 

Принцип работы систем со спектральным уплотнением.

 

В  простейшем случае каждый лазерный передатчик генерирует сигнал на определенной частоте из частотного плана. Все эти сигналы перед тем, как вводятся в оптическое волокно объединяются мультиплексором (MUX). На приемном конце сигналы аналогично разделяются демультиплексором (DEMUX). Здесь, так же как и в SDH сетях, мультиплексор является ключевым элементом.

Передаваемый по технологии WDM световой поток, состоит из различных длин волн (λ).

https://studfiles.net/html/2706/990/html_XVt1uKLDfz.qKUQ/img-2FnCOR.png

Рис 1.Принцип передачи сигналов в WDM

 

То есть по одному волокну можно передавать более сотни стандартных каналов. Так, аппаратура, используемая при построении DWDM-сети Компании ТрансТелеКом, в максимальной конфигурации позволяет задействовать до 160 длин волн.

Принципиальная схема WDM достаточно проста. Для того чтобы организовать в одном волокне несколько оптических каналов сигналы SDH «окрашивают», то есть меняют оптическую длину волны для каждого такого сигнала. «Окрашенные» сигналы смешиваются при помощи мультиплексора и передаются в оптическую линию. В конечном пункте происходит обратная операция - «окрашенные» сигналы SDH выделяются из группового сигнала и передаются потребителю.

https://studfiles.net/html/2706/990/html_XVt1uKLDfz.qKUQ/img-if8e7j.png

Рис. 2. –Мультиплексирование – демультиплексирование сигналов в WDM

 

Естественно, что для того чтобы передавать по одному волокну множество волновых потоков, технология WDM обеспечена оборудованием особой точности. Так, погрешность длины волны, которую обеспечивает стандартный лазер, применяемый в телекоммуникациях, примерно в сто раз больше, чем требуется в системе WDM.

По мере прохождения по оптическому волокну сигнал постепенно затухает. Для того чтобы его усилить, используются оптические усилители. Это позволяет передавать данные на расстояния до 4000 км без перевода оптического сигнала в электрический (для сравнения, в SDH это расстояние не превышает 200 км).

https://studfiles.net/html/2706/990/html_XVt1uKLDfz.qKUQ/img-UbAQsW.png

Рис. 3. – Система передачи  WDM

 

Преимущества WDM очевидны. Эта технология позволяет получить наиболее масштабный и рентабельный способ расширения полосы пропускания волоконно-оптических каналов в сотни раз. Пропускную способность оптических линий на основе систем WDM можно наращивать, постепенно добавляя по мере развития сети в уже существующее оборудование новые оптические каналы.

В общем случае схема применения технологий WDM может быть представлена так, как указано на рисунке 3.

https://studfiles.net/html/2706/990/html_XVt1uKLDfz.qKUQ/img-1NoHWN.png

Рис. 4.

Типовой состав оборудования представляет собой необходимое количество оптических транспондеров, осуществляющих преобразование длин волн и оптический мультиплексор, смешивающий их все в один мультиспектральный сигнал.

Оптический транспондер – устройство, обеспечивающее интерфейс между оборудованием оконечного доступа и линией WDM. Согласно рекомендациям МСЭ G.957 для систем СЦИ (SDH) допустимые значения спектральных параметров на выходных оптических интерфейсах имеют следующие значения: ширина спектральной линии Δλ≈±0.5 нм (для STM -16), а центральная длина волны может иметь любое значение в пределах диапазона 1530... 1565 нм. На входы же оптического мультиплексора должны поступать оптические сигналы, спектральные параметры которых, должны строго соответствовать стандартам, определённым рекомендацией ITU-T G.692. Очевидно, что если на оптические входы мультиплексоров подать сигналы с выходов оптических передатчиков SDH, то мультиплексирование осуществлено не будет. Необходимое соответствие достигается благодаря применению в аппаратуре WDM специального преобразователя длин волн - транспондера. Это устройство может иметь различное количество оптических входов и выходов. Но если на любой вход транспондера может быть подан оптический сигнал, параметры которого определены рекомендации G.957, то выходные его сигналы должны по параметрам соответствовать рекомендации G.692. При этом, если уплотняется m оптических сигналов, то на выходе транспондера длина волны каждого канала должна соответствовать только одному из них в соответствии с сеткой частотного плана ITU.

Оптический (де)мультиплексор CWDM. Основой мультиплексора/демультиплексора является дисперсионный элемент, способный разделить сигналы различных длин волн. В современных CWDM-системах для разделения оптических несущих применяются, как правило, относительно недорогие устройства на основе тонкопленочных фильтров (TFF, Thin Film Filter). Потери, вносимые такими устройствами, составляют около 1 дБ на канал (в реальных системах были получены величины менее 2,5 дБ для 8-канального устройства). Тонкопленочная технология характеризуется высокой развязкой (изоляцией) соседних каналов – порядка 30 дБ, высокой температурной стабильностью – 0,002 нм/°С, что эквивалентно изменению рабочей длины волны на ±0,07 нм при изменении температуры на ±35°С. Для выделения длин волн с разносом 20 нм требуются фильтры с существенно меньшим числом диэлектрических слоев, чем в случае DWDM-фильтров (примерно 50 и 150 слоев соответственно), что положительно сказывается на стоимости.

Мультиплексоры/демультиплексоры, основанные на применении многослойных тонкопленочных фильтров, являются (де)мультиплексорами последовательного типа, то есть один фильтр выделяет один канал. Использование таких устройств в системах со большим числом каналов (на практике больше 4-х) может привести к значительному росту вносимых потерь, и в этом случае иногда используют решеточные (де)мультиплексоры параллельного или гибридного параллельно-последовательного типа. Принцип их работы заключается в том, что приходящий сигнал проходит через волновод-пластину и распределяется по множеству волноводов, фактически представляющих собой дифракционную структуру AWG (arrayed waveguide grating). При этом в каждом волноводе по-прежнему присутствуют все длины волн, т.е. сигнал остается мультиплексным, только распараллеленным. Так как длины волноводов отличаются друг от друга на фиксированную величину, потоки проходят разный по длине путь. В итоге световые потоки собираются в волноводе-пластине, где происходит их фокусировка, и создаются пространственно разнесенные максимумы, под которые и рассчитываются выходные полюса. Физика процесса такая же, как в обычной дифракционной решетке, что и дало название технологии. Мультиплексирование происходит обратным путем.

2. ВИДЫ WDM СИСТЕМ

В настоящее время получили распространение следующие технологии спектрального  мультиплексирования:

·         2-канальный WDM;

·         грубое спектральное мультиплексирование (CWDM);

·         плотное спектральное уплотнение (DWDM).

·         сверхплотное спектральное уплотнение (HDWDM).

https://studfiles.net/html/2706/990/html_XVt1uKLDfz.qKUQ/img-9su7Yo.png

Рис. 5. - Зависимость потерь в типовом одномодовом оптоволокне от длины волны передаваемого оптического сигнала

 

На рисунке 5. схематически изображена зависимость потерь в типовом одномодовом оптоволокне в диапазоне, соответствующем его «окну прозрачности», от длины волны передаваемого оптического сигнала. Там же для наглядности обозначены названия диапазонов согласно рекомендации международного телекоммуникационного союза (ITU) ITU-T G.692. Ниже приведены расшифровки названий оптических диапазонов:

·         O – первичный диапазон (Original, 1260-1360 нм);

·         E – расширенный диапазон (Extended, 1360-1460 нм);

·         S – коротковолновый диапазон (short wavelength, 1460-1530 нм);

·         C – стандартный диапазон (Conventional, 1530-1570);

·         L – длинноволновый диапазон (Long wavelength, 1570-1625 нм).

Исторически первыми возникли двухволновые WDM системы, работающие на центральных длинах волн из второго и третьего окон прозрачности кварцевого волокна (1310 и 1550 нм). Главным достоинством таких систем является то, что из-за большого спектрального разноса полностью отсутствует влияние каналов друг на друга. Этот способ позволяет либо удвоить скорость передачи по одному оптическому волокну, либо организовать дуплексную связь. Двухканальный WDM (иногда двунаправленный, bi-di WDM) является в настоящее время наиболее распространенным решением из мира технологий WDM. Принцип работы двухканального WDM можно понять из рисунка 6.

 

 https://studfiles.net/html/2706/990/html_XVt1uKLDfz.qKUQ/img-zALnNq.png

Рис. 6. - Принцип работы двухканального WDM

 

Грубое спектральное мультиплексирование — CWDM (Coarse Wavelength Division Multiplexing) — является технологией спектрального уплотнения с частотным разносом каналов не менее 200 ГГц, базирующейся на использовании оптических каналов, лежащих в диапазоне от 1270 до 1610 нм и отстоящих друг от друга на расстоянии 20 нм, как специфицировано рекомендацией ITU с идентификатором ITU-T G-694.2. Поначалу использовался только диапазон волн 1470 – 1610 нм (8 длин волн), а область 1260 – 1360 не использовалась из-за увеличения затухания на длинах менее 1310 нм (увеличивается коэффициент рассеяния Рэлея).

Для компенсации эффекта поглощения на длине волны 1383 нм стали применять специальные волокна с нулевым «водяным пиком» (ZWPF, LWPF). Если система использует весь диапазон волн 1270 – 1610 нм, то ее называют FS-CWDM-системой (Full-spectrum CWDM).

Область применения технологии CWDM — городские сети с расстоянием до 50 км. Достоинством этого вида WDM систем является низкая (по сравнению с остальными типами) стоимость оборудования вследствие меньших требований к компонентам. Решения CWDM рассматриваются как дешевая замена более дорогих систем DWDM в тех случаях, когда пользователям требуется не более 8-16 каналов WDM.

Отличаясь невысокой стоимостью, простотой монтажа и невысокими требованиями к качеству существующей оптической инфраструктуры, данная технология позволяет передавать по одному волокну до 16 (18) потоков данных. При этом решение абсолютно невосприимчиво к типам и скоростям передаваемого трафика, так как мультиплексирование происходит на физическом уровне. Так, в одном волокне легко могут "сосуществовать" несколько потоков Gigabit Ethernet и 10 Gigabit Ethernet, потоки SDH STM и даже Fibre Channel. Таким образом, CWDM позволяет радикальным образом увеличить пропускную способность оптической сети без прокладки нового оптического кабеля.

Бурному развитию CWDM, помимо удешевления мультиплексирующего оборудования, также способствовало и развитие технологий производства оптического волокна. Дело в том, что CWDM использует для работы широкий диапазон длин волн: от 1310 до 1610 нм, что требует наличия оптического кабеля на основе волокна без так называемого водного пика (Low Water Peak Fiber). Такое волокно (например, популярное сегодня Corning SMF-28e+) обладает расширенным до порядка 300 нм спектром пропускания.

В полную ширину спектра 340 нм с занимаемой областью 1270-1610 нм входят 18 стандартных каналов с шагом 20 нм.

Будучи наложенной на характеристику затухания стандартного ОВ, эта область содержит сглаженный максимум затухания на 1383 нм.

Хотя вероятность увеличения максимального затухания в районе 1383 нм мала, нужно иметь в виду, что три стандартных канала CWDM: 1370, 1390 и 1410 нм - расположены около этого пика. Они могут быть причиной определенных трудностей (вызванных необходимостью индивидуальной подстройки коэффициентов усиления каналов в тракте ВОСП) при реализации полного (18 каналов) варианта использования полосы CWDM. Если исключить эти три канала, то возможности расширения ограничиваются семью каналами и максимальное общее число рабочих каналов составит 15, что вполне может удовлетворить многих пользователей.

Плотное спектральное мультиплексирование — DWDM (Dense Wavelength Division Multiplexing) — технология для объединения еще гораздо большего числа длин волн, нежели это предусмотрено предыдущей технологией. Большинство ведущих производителей предлагают DWDM-оборудование, позволяющее мультиплексировать в С-диапазоне (1530-1565 нм) до 40 оптических каналов при ширине одного канала 100 ГГц или до 80 оптических каналов при его ширине 50 ГГц. В этом случае максимальная емкость одного оптического канала составляет 10 Гбит/с (уровень STM-64). В диапазоне L (1570-1605 нм) максимальное число оптических каналов может достигать 160 при ширине канала 50 ГГц.  В этой же полосе работают легированные эрбием усилители оптического сигнала (EDFA).

Частотный план для DWDM систем определяется стандартом ITU G.694.1. Область применения — магистральные сети. Этот вид WDM систем предъявляет более высокие требования к компонентам, чем CWDM (ширина спектра источника излучения, температурная стабилизация источника и т. д.). Толчок к бурному развитию DWDM сетей дало появление недорогих и эффективных волоконных эрбиевых усилителей (EDFA), работающих в промежутке от 1525 до 1565 нм (третье окно прозрачности кварцевого волокна).

Сверхплотное спектральное уплотнение — HDWDM (High Dense Wavelength Division Multiplexing) — перспективная технология спектрального уплотнения, позволяющая поднять количество уплотняемых каналов еще в 2-4 раза, по отношению к DWDM. В настоящий момент еще не получила распространения.

В таблице 1. показаны сводные данные по технологиям спектрального уплотнения.

 

 

 

Таблица 1. Сравнительные характеристики технологий WDM.

CWDM

(грубое СУ)

DWDM

(плотное СУ)

HDWDM

(сверхплотное СУ)

Шаг каналов

20 нм

1,6 нм

200, 100, 50 ГГц

0,4 нм

25, 12,5 ГГц

Используемые диапазоны

O, E, S, C, L

S, C, L

C, L

Число каналов

до 18

десятки/сотни

десятки

Относительная стоимость

низкая

высокая

высокая