Тема урока: "Определение расстояний и размеров тел в Солнечной системе."

Используя третий закон Кеплера, среднее расстояние всех планет от Солнца можно выразить через среднее расстояние Земли от Солнца. Определив его в километрах, можно найти в этих единицах все расстояния в Солнечной системе.

Но есть и другие варианты. Разобраться в этом нам помогут сообщения, подготовленные одноклассниками

  1. Градусные измерения и триангуляция

Эратосфен — греческий ученый, живший в египетском городе Александрии с 276 года по 196 год до нашей эры. Работал он в Александрийском мусейоне. Отчасти это был музей, отчасти научный центр того времени.

т проезжих путешественников Эратосфен услышал о необычном явлении, которое они наблюдали в Сиене, городе, расположенном далеко к югу от Александрии. Путешественники рассказали, что в полдень первого дня лета — в самый тельный день в году — в Сиене исчезали тени. Солнце в это время стояло прямо над головой, лучи его падали на землю отвесно вниз. Внимательно вглядываясь в воду водоема, можно было рассмотреть отражение Солнца на дне.

Эhello_html_6b6e63b4.jpgратосфен съездил в Сиену и убедился в этом сам. Вернувшись в Александрию, он обнаружил, что и в самый длительный день года в полдень стены мусейона продолжали отбрасывать тень на землю. Основываясь на этом простом наблюдении, он смог вычислить окружность Земли.
Вычисления окружности Эратосфен знал, что из - за громадного расстояния от Земли до Солнца, лучи последнего достигают и Сиены и Александрии параллельными лучами. То есть лучи Солнца, падающие на землю в Александрии, параллельны лучам, падающим на землю в Сиене в то же время. Если бы Земля была плоской, то тени исчезали бы на ней повсеместно 21 июня. Но так как, рассуждал он, Земля искривлена, то в Александрии, удаленной от Сиены на 500 миль (1 миля равна 1,609 километра) к северу, местные стены и колонны наклонены по отношению к сиенским стенам и колон нам под некоторым углом. Итак, в полдень первого дня лета Эратосфен измерил тень, отбрасываемую обелиском, стоявшим неподалеку от мусейона. Зная высоту обелиска, он смог легко вычислить длину линии, соединяющей вершину обелиска и конец тени. Получился воображаемый треугольник. После того как треугольник был «очерчен», оставалось, используя известные к тому времени правила геометрии, вычислить его углы. И Эратосфен их вычислил. Он нашел, что угол отклонения обелиска от солнечного луча составляет чуть больше 7 градусов. Так как в Сиене вертикальные предметы не отбрасывали тени, то угол между ними и солнечным лучом составлял ноль градусов. Короче, никакого угла не было. Это означало, что Александрия отстоит по земной окружности от Сиены на 7 градусов. Такой угол между городами — это 1/50 часть окружности. Всякая окружность содержит 360 градусов, земная окружность в этом смысле не исключение. Эратосфен умножил расстояние между Сиеной и Александрией — 500 миль — на 50 и получил значение окружности Земли. Оно оказалось равным 25 тысячам миль. Современные ученые, измерившие с помощью высококлассной техники окружность Земли, нашли ее равной 24 894 тысяч миль. Все таки Эратосфен оказался первоклассным ученым, а не дилетантом.

Источник: http://www.voprosy-kak-i-pochemu.ru/eratosfen-i-okruzhnost-zemli/ .



  1. Пhello_html_m97f56a1.jpgараллактическое смещение

Классическим способом определения расстояний был и остается угломерный геометрический способ. Им определяют расстояния и до далеких звезд, к которым метод радиолокации неприменим. Геометрический способ основан на явлении параллактического смещения. Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя



hello_html_99293f0.jpg


3)Объяснение учителя

аhello_html_m242365f7.jpg) Измерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда впервые был определен горизонтальный параллакс Солнца. Угол, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом.

D=R/sin p


1 рад = 206265’’


При малых углах sin р = p, если угол р выражен в радианах. Если р выражен в секундах дуги, то вводится множитель

hello_html_m4626df29.jpg

где 206265 — число секунд в одном радиане.

Тогда

hello_html_m1925c0a7.jpg

Знание этих соотношений упрощает вычисление расстояния по известному параллаксу:

hello_html_m6d9a31fa.jpg

б) Определение размеров тел

hello_html_73adafca.jpg


hello_html_3810b3d6.jpg


hello_html_m594a040d.jpg

Если углы hello_html_ma090673.pngи ρ малы, то синусы пропорциональны углам, и можно написать:

hello_html_m586b7648.jpg

Этот способ определения размеров светил применим только тогда, когда виден диск светила.


в) С 40-х годов нашего века радиотехника позволила определять расстояния до небесных тел посредством радиолокации, о которой вы знаете из курса физики. Советские и американские ученые уточнили радиолокацией расстояния до Меркурия, Венеры, Марса и Юпитера.

  1. Д.з., конспект

Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля?

http://tepka.ru/astronomiya

Пример решения задачи

Задача. На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9"?

hello_html_fd583ca.jpg